
ContentsContents

 Common Language Runtime (CLR) Integration Programming Concepts
 Database objects +
 Data access +
 Security +
 Assemblies +
 Assemblies - Designing
 Assemblies - Getting Information
 Assemblies - Implementing
 Assemblies - Properties
 Assemblies (Database Engine)
 CLR Integration - Enabling
 CLR Integration - Overview
 CLR Integration - What's New
 CLR Integration Architecture - Performance
 CLR Integration Architecture - CLR Hosted Environment
 Common Language Runtime Integration Overview
 Debugging CLR Database Objects
 Deploying CLR Database Objects
 Monitoring and Troubleshooting Managed Database Objects

Common Language Runtime (CLR) Integration
Programming Concepts
10/1/2018 • 2 minutes to read • Edit Online

APPLIES TO: SQL Server Azure SQL Database Azure SQL Data Warehouse Parallel Data
Warehouse

IMPORTANTIMPORTANT

NOTENOTE

Beginning with SQL Server 2005 (9.x), SQL Server features the integration of the common language runtime
(CLR) component of the .NET Framework for Microsoft Windows. This means that you can now write stored
procedures, triggers, user-defined types, user-defined functions, user-defined aggregates, and streaming table-
valued functions, using any .NET Framework language, including Microsoft Visual Basic .NET and Microsoft Visual
C#.

The Microsoft.SqlServer.Server namespace includes core functionality for CLR programming in SQL Server.
However, the Microsoft.SqlServer.Server namespace is documented in the .NET Framework SDK. This
documentation is not included in SQL Server Books Online.

By default, the .NET Framework is installed with SQL Server, but the .NET Framework SDK is not. Without the SDK installed
on your computer and included in the Books Online collection, links to SDK content in this section do not work. Install the
.NET Framework SDK. Once installed, add the SDK to the Books Online collection and table of contents by following the
instructions in Installing the .NET Framework SDK.

CLR functionality, such as CLR user functions, are not supported for Azure SQL Database.

The following table lists the topics in this section.

Common Language Runtime (CLR) Integration Overview
Provides a brief overview of the CLR, and describes how and why this technology has been used in SQL Server.
Describes the benefits of using the CLR to create database objects.

Assemblies (Database Engine)
Describes how assemblies are used in SQL Server to deploy functions, stored procedures, triggers, user-defined
aggregates, and user-defined types that are written in one of the managed code languages hosted by the
Microsoft .NET Framework common language runtime (CLR), and not written in Transact-SQL.

Building Database Objects with Common Language Runtime (CLR) Integration
Describes the kinds of objects that can be built using the CLR, and reviews the requirements for building CLR
database objects.

Data Access from CLR Database Objects
Describes how a CLR routine can access data stored in an instance of SQL Server.

CLR Integration Security
Describes the CLR integration security model.

Debugging CLR Database Objects
Describes limitations of and requirements for debugging CLR database objects.

https://github.com/MicrosoftDocs/sql-docs/blob/live/docs/relational-databases/clr-integration/common-language-runtime-clr-integration-programming-concepts.md
http://technet.microsoft.com/library/bb686823(v=SQL.105).aspx
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/clr-integration/common-language-runtime-integration-overview
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/clr-integration/assemblies-database-engine
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/clr-integration/database-objects/building-database-objects-with-common-language-runtime-clr-integration
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/clr-integration/data-access/data-access-from-clr-database-objects
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/clr-integration/security/clr-integration-security
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/clr-integration/debugging-clr-database-objects

See Also

Deploying CLR Database Objects
Describes deploying assemblies to production servers.

Managing CLR Integration Assemblies
Describes how to create and drop CLR integration assemblies.

Monitoring and Troubleshooting Managed Database Objects
Provides information about the tools that can be used to monitor and troubleshoot managed database objects and
assemblies running in SQL Server.

Usage Scenarios and Examples for Common Language Runtime (CLR) Integration
Describes usage scenarios and code samples using CLR objects.

Assemblies (Database Engine)
Installing the .NET Framework SDK

https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/clr-integration/deploying-clr-database-objects
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/clr-integration/assemblies/managing-clr-integration-assemblies
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/clr-integration/monitoring-and-troubleshooting-managed-database-objects
http://msdn.microsoft.com/library/33aac25f-abb4-4f29-af88-4a0dacd80ae7
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/clr-integration/assemblies-database-engine
http://technet.microsoft.com/library/bb686823(v=SQL.105).aspx

Building Database Objects with Common Language
Runtime (CLR) Integration
10/1/2018 • 2 minutes to read • Edit Online

APPLIES TO: SQL Server Azure SQL Database Azure SQL Data Warehouse Parallel Data
Warehouse

NOTENOTE

You can build database objects using the SQL Server integration with the .NET Framework common language
runtime (CLR). Managed code that runs inside of Microsoft SQL Server is referred to as a "CLR routine." These
routines include:

Scalar-valued user-defined functions (scalar UDFs)

Table-valued user-defined functions (TVFs)

User-defined procedures (UDPs)

User-defined triggers

CLR routines have the same structure in managed code. They are mapped to public, static (shared in
Microsoft Visual Basic .NET) methods of a class. In addition to routines, user-defined types (UDTs) and user-
defined aggregate functions can also be defined using the .NET Framework. UDTs and user-defined
aggregates are mapped to entire .NET Framework classes.

Each type of .NET Framework routine has a Transact-SQL declaration and can be used anywhere in SQL
Server that the Transact-SQL equivalent can be used. For instance, scalar UDFs can be used in any scalar
expression. A TVF can be used in any FROM clause. A procedure can be invoked in an EXEC statement or
invoked from a client application.

Execution of a CLR object (user-defined function, user-defined type, or trigger) on the common language runtime can take
place on multiple threads (parallel plan), if the query optimizer decides it is beneficial. However, if a user-defined function
accesses data, execution will be on a serial plan. When executed on a server version prior to SQL Server 2008, if a user-
defined function contains LOB parameters or return values, execution also must be on a serial plan.

The following table lists the topics covered in this section.

Getting Started with CLR Integration
Provides a brief overview of the libraries and namespaces required to compile object using CLR integration with
SQL Server. Includes an example "Hello World" CLR stored procedure.

Supported .NET Framework Libraries
Provides information on the .NET Framework libraries supported by CLR integration.

CLR Integration Programming Model Restrictions
Provides information about CLR integration programming model restrictions.

SQL Server Data Types in the .NET Framework
An overview of SQL Server data types and their .NET Framework equivalents.

Overview of CLR Integration Custom Attributes
Provides information about CLR integration custom attributes.

https://github.com/MicrosoftDocs/sql-docs/blob/live/docs/relational-databases/clr-integration/database-objects/building-database-objects-with-common-language-runtime-clr-integration.md
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/clr-integration/database-objects/getting-started-with-clr-integration
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/clr-integration/database-objects/supported-net-framework-libraries
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/clr-integration/database-objects/clr-integration-programming-model-restrictions
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/clr-integration-database-objects-types-net-framework/sql-server-data-types-in-the-net-framework
http://msdn.microsoft.com/library/ecf5c097-0972-48e2-a9c0-b695b7dd2820

See Also

CLR User-Defined Functions
Describes how to implement and use the various types of CLR functions: table-valued, scalar, and user-defined
aggregate functions.

CLR User-Defined Types
Describes how to implement and use CLR user-defined types.

CLR Stored Procedures
Describes how to implement and use CLR stored procedures.

CLR Triggers
Describes how to implement and use CLR triggers.

Common Language Runtime (CLR) Integration Overview

https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/clr-integration-database-objects-user-defined-functions/clr-user-defined-functions
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/clr-integration-database-objects-user-defined-types/clr-user-defined-types
http://msdn.microsoft.com/library/bbdd51b2-a9b4-4916-ba6f-7957ac6c3f33
http://msdn.microsoft.com/library/302a4e4a-3172-42b6-9cc0-4a971ab49c1c
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/clr-integration/common-language-runtime-integration-overview

Data Access from CLR Database Objects
10/1/2018 • 2 minutes to read • Edit Online

APPLIES TO: SQL Server Azure SQL Database Azure SQL Data Warehouse Parallel Data
Warehouse

NOTENOTE

A common language runtime (CLR) routine may easily access data stored in the instance of Microsoft SQL Server
in which it runs, as well as data stored in remote instances. Which particular data the routine can access is
determined by the user context in which the code is running. Access data from within a CLR database object by
using the .NET Framework Data Provider for SQL Server, also referred to as SqlClient. This is the same provider
used by developers accessing SQL Server data from managed client and middle-tier applications. Because of this,
you can leverage your knowledge of ADO.NET and SqlClient in client and middle-tier applications.

User-defined type methods and user-defined functions are not allowed to perform data access by default. You must set the
DataAccess property of SqlMethodAttribute or SqlFunctionAttribute to DataAccessKind.Read to enable read-only data
access from user-defined type (UDT) methods or user-defined functions. Data modification operations are not allowed from
UDTs or user-defined functions, and throws exceptions at execution time if attempted.

This section discusses only the specific functional and behavioral differences when accessing data from within a
CLR database object. For more information about the features and functionality of ADO.NET, see the ADO.NET
documentation included in the .NET Framework SDK.

The following table lists the topics in this section.

Context Connection
Describes the context connection to SQL Server.

Impersonation and Credentials for Connections
Describes impersonating connections and connection credentials.

SQL Server In-Process Specific Extensions to ADO.NET
Discusses the in-process specific SqlPipe, SqlContext, SqlTriggerContext, and SqlDataRecord objects.

CLR Integration and Transactions
Describes how the new transaction framework provided in the System.Transactions namespace integrates with
ADO.NET and SQL Server CLR integration.

XML Serialization from CLR Database Objects
Explains how to enable XML serialization scenarios of CLR database objects inside SQL Server.

https://github.com/MicrosoftDocs/sql-docs/blob/live/docs/relational-databases/clr-integration/data-access/data-access-from-clr-database-objects.md
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/clr-integration/data-access/context-connection
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/clr-integration/data-access/impersonation-and-credentials-for-connections
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/clr-integration-data-access-in-process-ado-net/sql-server-in-process-specific-extensions-to-ado-net
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/clr-integration-data-access-transactions/clr-integration-and-transactions
http://msdn.microsoft.com/library/ac84339b-9384-4710-bebc-01607864a344

CLR Integration Code Access Security
10/1/2018 • 6 minutes to read • Edit Online

APPLIES TO: SQL Server Azure SQL Database Azure SQL Data Warehouse Parallel Data
Warehouse

SQL Server Host Policy Level Permission Sets

The common language runtime (CLR) supports a security model called code access security for managed code. In
this model, permissions are granted to assemblies based on the identity of the code. For more information, see the
"Code Access Security" section in the .NET Framework software development kit.

The security policy that determines the permissions granted to assemblies is defined in three different places:

Machine policy: This is the policy in effect for all managed code running in the machine on which SQL
Server is installed.

User policy: This is the policy in effect for managed code hosted by a process. For SQL Server, the user
policy is specific to the Windows account on which the SQL Server service is running.

Host policy: This is the policy set up by the host of the CLR (in this case, SQL Server) that is in effect for
managed code running in that host.

The code access security mechanism supported by the CLR is based on the assumption that the runtime can
host both fully trusted and partially trusted code. The resources that are protected by CLR code access
security are typically wrapped by managed application programming interfaces that require the
corresponding permission before allowing access to the resource. The demand for the permission is
satisfied only if all the callers (at the assembly level) in the call stack have the corresponding resource
permission.

The set of code access security permissions that are granted to managed code when running inside SQL
Server is the intersection of the set of permissions granted by the above three policy levels. Even if SQL
Server grants a set of permissions to an assembly loaded in SQL Server, the eventual set of permissions
given to user code may be restricted further by the user and machine-level policies.

The set of code access security permissions granted to assemblies by the SQL Server host policy level is
determined by the permission set specified when creating the assembly. There are three permission sets: SAFE ,
EXTERNAL_ACCESS and UNSAFE (specified using the PERMISSION_SET option of CREATE ASSEMBLY
(Transact-SQL)).

SQL Server supplies a host-level security policy level to the CLR while hosting it; this policy is an additional policy
level below the two policy levels that are always in effect. This policy is set for every application domain that is
created by SQL Server. This policy is not meant for the default application domain that would be in effect when
SQL Server creates an instance of the CLR.

The SQL Server host-level policy is a combination of SQL Server fixed policy for system assemblies and user-
specified policy for user assemblies.

The fixed policy for CLR assemblies and SQL Server system assemblies grants them full trust.

The user-specified portion of the SQL Server host policy is based on the assembly owner specifying one of three
permission buckets for each assembly. For more information about the security permissions listed below, see the
.NET Framework SDK.

https://github.com/MicrosoftDocs/sql-docs/blob/live/docs/relational-databases/clr-integration/security/clr-integration-code-access-security.md
https://docs.microsoft.com/en-us/sql/temp2016a/t-sql/statements/create-assembly-transact-sql

SAFESAFE

PERMISSION VALUE(S)/DESCRIPTION

SecurityPermission Execution: Permission to execute managed code.

SqlClientPermission Context connection = true, context connection = yes:
Only the context-connection can be used and the connection
string can only specify a value of "context connection=true" or
"context connection=yes".

AllowBlankPassword = false: Blank passwords are not
permitted.

EXTERNAL_ACCESSEXTERNAL_ACCESS

PERMISSION VALUE(S)/DESCRIPTION

DistributedTransactionPermission Unrestricted: Distributed transactions are allowed.

DNSPermission Unrestricted: Permission to request information from Domain
Name Servers.

EnvironmentPermission Unrestricted: Full access to system and user environment
variables is allowed.

EventLogPermission Administer: The following actions are allowed: creating an
event source, reading existing logs, deleting event sources or
logs, responding to entries, clearing an event log, listening to
events, and accessing a collection of all event logs.

FileIOPermission Unrestricted: Full access to files and folders is allowed.

KeyContainerPermission Unrestricted: Full access to key containers is allowed.

NetworkInformationPermission Access: Pinging is permitted.

RegistryPermission Allows read rights to HKEY_CLASSES_ROOT,
HKEY_LOCAL_MACHINE, HKEY_CURRENT_USER,
HKEY_CURRENT_CONFIG, and HKEY_USERS.

Only internal computation and local data access are allowed. SAFE is the most restrictive permission set. Code
executed by an assembly with SAFE permissions cannot access external system resources such as files, the
network, environment variables, or the registry.

SAFE assemblies have the following permissions and values:

EXTERNAL_ACCESS assemblies have the same permissions as SAFE assemblies, with the additional ability to
access external system resources such as files, networks, environmental variables, and the registry.

EXTERNAL_ACCESS assemblies also have the following permissions and values:

SecurityPermission Assertion: Ability to assert that all the callers of this code
have the requisite permission for the operation.

ControlPrincipal: Ability to manipulate the principal object.

Execution: Permission to execute managed code.

SerializationFormatter: Ability to provide serialization
services.

SmtpPermission Access: Outbound connections to SMTP host port 25 are
allowed.

SocketPermission Connect: Outbound connections (all ports, all protocols) on a
transport address are allowed.

SqlClientPermission Unrestricted: Full access to the datasource is allowed.

StorePermission Unrestricted: Full access to X.509 certificate stores is allowed.

WebPermission Connect: Outbound connections to web resources are
allowed.

PERMISSION VALUE(S)/DESCRIPTION

UNSAFEUNSAFE

IMPORTANTIMPORTANT

Accessing External Resources

IF THEN

The execution context corresponds to a SQL Server login. Attempts to access external resources are denied and a
security exception is raised.

UNSAFE allows assemblies unrestricted access to resources, both within and outside SQL Server. Code executing
from within an UNSAFE assembly can also call unmanaged code.

UNSAFE assemblies are given FullTrust.

SAFE is the recommended permission setting for assemblies that perform computation and data management tasks without
accessing resources outside SQL Server. EXTERNAL_ACCESS is recommended for assemblies that access resources outside
SQL Server. EXTERNAL_ACCESS assemblies by default execute as the SQL Server service account. It is possible for
EXTERNAL_ACCESS code to explicitly impersonate the caller's Windows Authentication security context. Since the default is
to execute as the SQL Server service account, permission to execute EXTERNAL_ACCESS should only be given to logins
trusted to run as the service account. From a security perspective, EXTERNAL_ACCESS and UNSAFE assemblies are identical.
However, EXTERNAL_ACCESS assemblies provide various reliability and robustness protections that are not in UNSAFE
assemblies. Specifying UNSAFE allows the code in the assembly to perform illegal operations against the SQL Server process
space, and hence can potentially compromise the robustness and scalability of SQL Server. For more information about
creating CLR assemblies in SQL Server, see Managing CLR Integration Assemblies.

If a user-defined type (UDT), stored procedure, or other type of construct assembly is registered with the SAFE
permission set, then managed code executing in the construct is unable to access external resources. However, if
either the EXTERNAL_ACCESS or UNSAFE permission sets are specified, and managed code attempts to access
external resources, SQL Server applies the following rules:

https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/clr-integration/assemblies/managing-clr-integration-assemblies

The execution context corresponds to a Windows login and
the execution context is the original caller.

The external resource is accessed under the security context of
the SQL Server service account.

The caller is not the original caller. Access is denied and a security exception is raised.

The execution context corresponds to a Windows login and
the execution context is the original caller and the caller has
been impersonated.

Access uses the caller security context; not the service account.

IF THEN

Permission Set Summary

SAFE EXTERNAL_ACCESS UNSAFE

Code Access Security
Permissions

Execute only Execute + access to external
resources

Unrestricted (including
P/Invoke)

Programming model
restrictions

Yes Yes No restrictions

Verifiability requirement Yes Yes No

Local data access Yes Yes Yes

Ability to call native code No No Yes

See Also

The following chart summarizes the restrictions and permissions granted to the SAFE , EXTERNAL_ACCESS, and
UNSAFE permission sets.

CLR Integration Security
Host Protection Attributes and CLR Integration Programming
CLR Integration Programming Model Restrictions
CLR Hosted Environment

https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/clr-integration/security/clr-integration-security
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/clr-integration-security-host-protection-attributes/host-protection-attributes-and-clr-integration-programming
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/clr-integration/database-objects/clr-integration-programming-model-restrictions
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/clr-integration/clr-integration-architecture-clr-hosted-environment

Managing CLR Integration Assemblies
10/1/2018 • 2 minutes to read • Edit Online

APPLIES TO: SQL Server Azure SQL Database Azure SQL Data Warehouse Parallel Data
Warehouse

COLUMN DESCRIPTION

assembly_id The identifier defined for the assembly. This number is
assigned to all objects relating to the same assembly.

name The name of the object.

file_id A number identifying each object, with the first object
associated with a given assembly_id being given the value of
1. If multiple objects are associated with the same
assembly_id, then each subsequent file_id value is
incremented by 1.

content The hexadecimal representation of the assembly or file.

In This Section

See Also

Managed code is compiled and then deployed in units called an assembly. An assembly is packaged as a DLL or
executable (.exe) file. While an executable file can run on its own, a DLL must be hosted in an existing application.
Managed DLL assemblies can be loaded into and hosted by Microsoft SQL Server. SQL Server requires you to
register the assembly in a SQL Server database using the CREATE ASSEMBLY statement, before it can be loaded
in the process and used. Assemblies can also be updated from a more recent version using the ALTER ASSEMBLY
statement, or removed from SQL Server using the DROP ASSEMBLY statement.

Assembly information is stored in the sys.assembly_files table in the database where the assembly has been
installed. The sys.assembly_files table contains the following columns.

Creating an Assembly
Discusses creating SAFE, EXTERNAL_ACCESS, and UNSAFE CLR assemblies in SQL Server.

Altering an Assembly
Describes updating CLR assemblies in SQL Server.

Dropping an Assembly
Discusses dropping CLR assemblies from SQL Server.

CLR Integration Security
CLR Integration Code Access Security

https://github.com/MicrosoftDocs/sql-docs/blob/live/docs/relational-databases/clr-integration/assemblies/managing-clr-integration-assemblies.md
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/clr-integration/assemblies/creating-an-assembly
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/clr-integration/assemblies/altering-an-assembly
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/clr-integration/assemblies/dropping-an-assembly
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/clr-integration/security/clr-integration-security
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/clr-integration/security/clr-integration-code-access-security

Assemblies - Designing
10/1/2018 • 3 minutes to read • Edit Online

APPLIES TO: SQL Server Azure SQL Database Azure SQL Data Warehouse Parallel Data
Warehouse

Packaging Assemblies

Managing Assembly Security

SAFESAFE

EXTERNAL_ACCESSEXTERNAL_ACCESS

This topic describes the following factors you should consider when you design assemblies:

Packaging assemblies

Managing assembly security

Restrictions on assemblies

An assembly can contain functionality for more than one SQL Server routine or type in its classes and methods.
Most of the time, it makes sense to package the functionality of routines that perform related functions within the
same assembly, especially if these routines share classes whose methods call one another. For example, classes that
perform data entry management tasks for common language runtime (CLR) triggers and CLR stored procedures
can be packaged in the same assembly. This is because the methods for these classes are more likely to call each
other than those of less related tasks.

When you are packaging code into assembly, you should consider the following:

CLR user-defined types and indexes that depend on CLR user-defined functions can cause persisted data to
be in the database that depends on the assembly. Modifying the code of an assembly is frequently more
complex when there is persisted data that depends on the assembly in the database. Therefore, it is
generally better to separate code on which persisted data dependencies rely (such as user-defined types and
indexes using user-defined functions) from code that does not have such persisted data dependencies. For
more information, see Implementing Assemblies and ALTER ASSEMBLY (Transact-SQL).

If a piece of managed code requires higher permission, it is better to separate that code into a separate
assembly from code that does not require higher permission.

You can control how much an assembly can access resources protected by .NET Code Access Security when it runs
managed code. You do this by specifying one of three permission sets when you create or modify an assembly:
SAFE, EXTERNAL_ACCESS, or UNSAFE.

SAFE is the default permission set and it is the most restrictive. Code run by an assembly with SAFE permissions
cannot access external system resources such as files, the network, environment variables, or the registry. SAFE
code can access data from the local SQL Server databases or perform computations and business logic that do not
involve accessing resources outside the local databases.

Most assemblies perform computation and data management tasks without having to access resources outside
SQL Server. Therefore, we recommend SAFE as the assembly permission set.

EXTERNAL_ACCESS allows for assemblies to access certain external system resources such as files, networks,
Web services, environmental variables, and the registry. Only SQL Server logins with EXTERNAL ACCESS

https://github.com/MicrosoftDocs/sql-docs/blob/live/docs/relational-databases/clr-integration/assemblies-designing.md
https://docs.microsoft.com/en-us/sql/temp2016a/t-sql/statements/alter-assembly-transact-sql

UNSAFEUNSAFE

Restrictions on Assemblies

Disallowed Custom AttributesDisallowed Custom Attributes

System.ContextStaticAttribute
System.MTAThreadAttribute
System.Runtime.CompilerServices.MethodImplAttribute
System.Runtime.CompilerServices.CompilationRelaxationsAttribute
System.Runtime.Remoting.Contexts.ContextAttribute
System.Runtime.Remoting.Contexts.SynchronizationAttribute
System.Runtime.InteropServices.DllImportAttribute
System.Security.Permissions.CodeAccessSecurityAttribute
System.STAThreadAttribute
System.ThreadStaticAttribute

System.Security.SuppressUnmanagedCodeSecurityAttribute
System.Security.UnverifiableCodeAttribute

Disallowed .NET Framework APIsDisallowed .NET Framework APIs

permissions can create EXTERNAL_ACCESS assemblies.

SAFE and EXTERNAL_ACCESS assemblies can contain only code that is verifiably type-safe. This means that
these assemblies can only access classes through well-defined entry points that are valid for the type definition.
Therefore, they cannot arbitrarily access memory buffers not owned by the code. Additionally, they cannot
perform operations that might have an adverse effect on the robustness of the SQL Server process.

UNSAFE gives assemblies unrestricted access to resources, both within and outside SQL Server. Code that is
running from within an UNSAFE assembly can call unmanaged code.

Also, specifying UNSAFE allows for the code in the assembly to perform operations that are considered type-
unsafe by the CLR verifier. These operations can potentially access memory buffers in the SQL Server process
space in an uncontrolled manner. UNSAFE assemblies can also potentially subvert the security system of either
SQL Server or the common language runtime. UNSAFE permissions should be granted only to highly trusted
assemblies by experienced developers or administrators. Only members of the sysadmin fixed server role can
create UNSAFE assemblies.

SQL Server puts certain restrictions on managed code in assemblies to make sure that they can run in a reliable
and scalable manner. This means that certain operations that can compromise the robustness of the server are not
permitted in SAFE and EXTERNAL_ACCESS assemblies.

Assemblies cannot be annotated with the following custom attributes:

Additionally, SAFE and EXTERNAL_ACCESS assemblies cannot be annotated with the following custom
attributes:

Any Microsoft .NET Framework API that is annotated with one of the disallowed HostProtectionAttributes
cannot be called from SAFE and EXTERNAL_ACCESS assemblies.

eSelfAffectingProcessMgmt
eSelfAffectingThreading
eSynchronization
eSharedState
eExternalProcessMgmt
eExternalThreading
eSecurityInfrastructure
eMayLeakOnAbort
eUI

Supported .NET Framework AssembliesSupported .NET Framework Assemblies

custommarshallers.dll
Microsoft.visualbasic.dll
Microsoft.visualc.dll
mscorlib.dll
system.data.dll
System.Data.SqlXml.dll
system.dll
system.security.dll
system.web.services.dll
system.xml.dll
System.Transactions
System.Data.OracleClient
System.Configuration

See Also

Any assembly that is referenced by your custom assembly must be loaded into SQL Server by using CREATE
ASSEMBLY. The following .NET Framework assemblies are already loaded into SQL Server and, therefore, can be
referenced by custom assemblies without having to use CREATE ASSEMBLY.

Assemblies (Database Engine)
CLR Integration Security

https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/clr-integration/security/clr-integration-security

Assemblies - Getting Information
10/1/2018 • 2 minutes to read • Edit Online

APPLIES TO: SQL Server Azure SQL Database Azure SQL Data Warehouse Parallel Data
Warehouse

See Also

The following catalog views and functions can be queried for metadata about assemblies.

To get information about individual assemblies

ASSEMBLYPROPERTY (Transact-SQL)

To get information about all assemblies in the database

sys.assemblies (Transact-SQL)

To get information about assembly files, including assembly binaries, source files, and debug files

sys.assembly_files (Transact-SQL)

To get information about cross-assembly references

sys.assembly_references (Transact-SQL)

To get assembly information about user-defined types

sys.assembly_types (Transact-SQL)

sys.types (Transact-SQL)

To get assembly information about common language runtime (CLR) stored procedures, triggers,
and functions

sys.assembly_modules (Transact-SQL)

To get information about non-CLR objects

sys.sql_modules (Transact-SQL)

Assemblies (Database Engine)
Designing Assemblies
Implementing Assemblies

https://github.com/MicrosoftDocs/sql-docs/blob/live/docs/relational-databases/clr-integration/assemblies-getting-information.md
https://docs.microsoft.com/en-us/sql/temp2016a/t-sql/functions/assemblyproperty-transact-sql
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/system-catalog-views/sys-assemblies-transact-sql
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/system-catalog-views/sys-assembly-files-transact-sql
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/system-catalog-views/sys-assembly-references-transact-sql
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/system-catalog-views/sys-assembly-types-transact-sql
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/system-catalog-views/sys-types-transact-sql
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/system-catalog-views/sys-assembly-modules-transact-sql
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/system-catalog-views/sys-sql-modules-transact-sql

Assemblies - Implementing
10/1/2018 • 4 minutes to read • Edit Online

APPLIES TO: SQL Server Azure SQL Database Azure SQL Data Warehouse Parallel Data
Warehouse

Creating Assemblies

Modifying Assemblies

This topic provides information about the following areas to help you implement and work with assemblies in the
database:

Creating assemblies

Modifying assemblies

Dropping, disabling, and enabling assemblies

Managing assembly versions

Assemblies are created in SQL Server by using the Transact-SQL CREATE ASSEMBLY statement, or in the SQL
Server Management Studio by using the Assembly Assisted Editor. Additionally, deploying a SQL Server Project
in Microsoft Visual Studio registers an assembly in the database that was specified for the project. For more
information, see Deploying CLR Database Objects.

To create an assembly by using Transact-SQL

CREATE ASSEMBLY (Transact-SQL)

To create an assembly by using SQL Server Management Studio

Assembly Properties (General Page)

Assemblies are modified in SQL Server by using the Transact-SQL ALTER ASSEMBLY statement or in SQL
Server Management Studio by using the Assembly Assisted Editor. You can modify an assembly when you want
to do the following:

Change the implementation of the assembly by uploading a newer version of the binaries of the assembly.
For more information, see Managing Assembly Versions later in this topic.

Change the permission set of the assembly. For more information, see Designing Assemblies.

Change the visibility of the assembly. Visible assemblies are available for referencing in SQL Server.
Nonvisible assemblies are not available, even if they have been uploaded in the database. By default,
assemblies uploaded to an instance of SQL Server are visible.

Add or drop a debug or source file associated with the assembly.

To modify an assembly by using Transact-SQL

ALTER ASSEMBLY (Transact-SQL)

To modify an assembly by using SQL Server Management Studio

Assembly Properties (General Page)

https://github.com/MicrosoftDocs/sql-docs/blob/live/docs/relational-databases/clr-integration/assemblies-implementing.md
https://docs.microsoft.com/en-us/sql/temp2016a/t-sql/statements/create-assembly-transact-sql
https://docs.microsoft.com/en-us/sql/temp2016a/t-sql/statements/alter-assembly-transact-sql

Dropping, Disabling, and Enabling Assemblies

Managing Assembly Versions

C a u t i o nC a u t i o n

Assemblies are dropped by using the Transact-SQL DROP ASSEMBLY statement or SQL Server Management
Studio.

To drop an assembly by using Transact-SQL

DROP ASSEMBLY (Transact-SQL)

To drop an assembly by using SQL Server Management Studio

Delete Objects

By default, all assemblies that are created in SQL Server are disabled from executing. You can use the clr
enabled option of the sp_configure system stored procedure to disable or enable the execution of all
assemblies that are uploaded in SQL Server. Disabling assembly execution prevents common language
runtime (CLR) functions, stored procedures, triggers, aggregates, and user-defined types from executing,
and stops those that are currently executing. Disabling assembly execution does not disable the ability to
create, alter, or drop assemblies. For more information, see clr enabled Server Configuration Option.

To disable and enable assembly execution

sp_configure (Transact-SQL)

When an assembly is uploaded to an instance SQL Server, the assembly is stored and managed within the
database system catalogs. Any changes made to the definition of the assembly in the Microsoft .NET Framework
should be propagated to the assembly that is stored in the database catalog.

When you have to modify an assembly, you must issue an ALTER ASSEMBLY statement to update the assembly
in the database. This will update the assembly to the latest copy of .NET Framework modules holding its
implementation.

The WITH UNCHECKED DATA clause of the ALTER ASSEMBLY statement instructs SQL Server to refresh even
those assemblies upon which persisted data in the database is dependent. Specifically, you must specify WITH
UNCHECKED DATA if any of the following exist:

Persisted computed columns that reference methods in the assembly, either directly, or indirectly, through
Transact-SQL functions or methods.

Columns of a CLR user-defined type that depend on the assembly, and the type implements a
UserDefined (non-Native) serialization format.

If WITH UNCHECKED DATA is not specified, SQL Server tries to prevent ALTER ASSEMBLY from executing if the
new assembly version affects existing data in tables, indexes, or other persistent sites. However, SQL Server does
not guarantee that computed columns, indexes, indexed views, or expressions will be consistent with the
underlying routines and types when the CLR assembly is updated. Be careful when you execute ALTER
ASSEMBLY to make sure that there is no mismatch between the result of an expression and a value that is based
on that expression stored in the assembly.

Only members of the db_owner and db_ddlowner fixed database role can execute run ALTER ASSEMBLY by
using the WITH UNCHECKED DATA clause.

SQL Server posts a message to the Windows application event log that the assembly has been modified with
unchecked data in the tables. SQL Server then marks any tables that contain data dependent on the assembly as
having unchecked data. The has_unchecked_assembly_data column of the sys.tables catalog view contains the
value 1 for tables that contain unchecked data, and 0 for tables without unchecked data.

https://docs.microsoft.com/en-us/sql/temp2016a/t-sql/statements/drop-assembly-transact-sql
https://docs.microsoft.com/en-us/sql/temp2016a/ssms/object/delete-objects
https://docs.microsoft.com/en-us/sql/temp2016a/database-engine/configure-windows/clr-enabled-server-configuration-option
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/system-stored-procedures/sp-configure-transact-sql

Interactions with Computer-wide Policy for Version BindingInteractions with Computer-wide Policy for Version Binding

See Also

To resolve the integrity of unchecked data, run DBCC CHECKDB WITH EXTENDED_LOGICAL_CHECKS against
each table that has unchecked data. If DBCC CHECKDB WITH EXTENDED_LOGICAL_CHECKS fails, you must
either delete the table rows that are not valid or modify the assembly code to address problems, and then issue
additional ALTER ASSEMBLY statements.

ALTER ASSEMBLY changes the assembly version. The culture and public key token of the assembly remain the
same.SQL Server does not allow registering different versions of an assembly with the same name, culture and
public key.

If references to assemblies stored in SQL Server are redirected to specific versions by using publisher policy or
computer-wide administrator policy, you must do either of the following:

Make sure the new version to which this redirection is made is in the database.

Modify any statements to the external policy files of the computer or publisher policy to make sure that
they reference the specific version that is in the database.

Otherwise, an attempt to load a new assembly version to the instance of SQL Server will fail.

To update the version of an assembly

ALTER ASSEMBLY (Transact-SQL)

Assemblies (Database Engine)
Getting Information About Assemblies

https://docs.microsoft.com/en-us/sql/temp2016a/t-sql/statements/alter-assembly-transact-sql

Assemblies - Properties
10/1/2018 • 2 minutes to read • Edit Online

APPLIES TO: SQL Server Azure SQL Database Azure SQL Data Warehouse Parallel Data
Warehouse

Options

Additional Properties Grid

See Also

Use this page to view or modify properties for the assembly.

Assembly name
Displays the assembly name, which always matches the name of the CLR assembly.

Assembly owner
Type the owner name or schema name or select from the list.

Permission set
Set the security level for the assembly. Three levels of security are provided: Safe, External access, and Unsafe
access.

Path to assembly
Type the path to the assembly file.

Browse
Navigate to the assembly you want to add. Click Browse if you do not want to type the path to the assembly file.

Creation Date
Displays the date the assembly was created/registered.

Strong Name
Displays True if the assembly has been digitally signed, False if it has not been digitally signed.

Version
Displays the version number of the assembly.

CREATE ASSEMBLY (Transact-SQL)

https://github.com/MicrosoftDocs/sql-docs/blob/live/docs/relational-databases/clr-integration/assemblies-properties.md
https://docs.microsoft.com/en-us/sql/temp2016a/t-sql/statements/create-assembly-transact-sql

Assemblies (Database Engine)
10/1/2018 • 2 minutes to read • Edit Online

APPLIES TO: SQL Server Azure SQL Database Azure SQL Data Warehouse Parallel Data
Warehouse

In This Section
TOPIC DESCRIPTION

Designing Assemblies Explains what you have to consider before creating an
assembly. This includes packaging assemblies, code access
permissions, and other restrictions.

Implementing Assemblies Explains how to create and drop assemblies, how and when to
modify assemblies, and how to retrieve metadata about
assemblies.

Getting Information About Assemblies Lists the catalog views and functions that can be queried for
metadata about assemblies.

The topics in this section provide information to help you understand, design, and implement assemblies.

Assemblies are DLL files used in an instance of SQL Server to deploy functions, stored procedures, triggers, user-
defined aggregates, and user-defined types that are written in one of the managed code languages hosted by the
Microsoft .NET Framework common language runtime (CLR), instead of in Transact-SQL.

An assembly in SQL Server is an object that references a managed application module (.dll file) that was created
in the .NET Framework common language runtime. An assembly contains class metadata and managed code.
Uploading an assembly to an instance of SQL Server is the first step toward creating any of the following
database objects:

CLR functions. For more information, see Create CLR Functions.

CLR stored procedures. For more information, see CLR Stored Procedures.

CLR triggers. For more information, see Create CLR Triggers.

User-defined aggregate functions. For more information, see Create User-defined Aggregates.

User-defined types. For more information, see Using User-Defined Types.

Assemblies perform the following functions in SQL Server:

Contain the managed code that runs the functionality of one or more of the CLR database objects
previously listed.

Contain metadata that includes the version number and culture of the assembly, an optional public key that
uniquely identifies the list of classes of the assembly, the methods that are defined in the assembly, and the
processor architecture of the assembly.

Manage the degree to which managed code can access outside resources by regulating code access
permissions.

Contain metadata about dependencies on other assemblies that are referenced by the assembly.

https://github.com/MicrosoftDocs/sql-docs/blob/live/docs/relational-databases/clr-integration/assemblies-database-engine.md
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/user-defined-functions/create-clr-functions
http://msdn.microsoft.com/library/bbdd51b2-a9b4-4916-ba6f-7957ac6c3f33
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/triggers/create-clr-triggers
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/user-defined-functions/create-user-defined-aggregates
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/native-client/features/using-user-defined-types

See Also
Common Language Runtime (CLR) Integration Programming Concepts

CLR Integration - Enabling
10/1/2018 • 2 minutes to read • Edit Online

APPLIES TO: SQL Server Azure SQL Database Azure SQL Data Warehouse Parallel Data
Warehouse

sp_configure 'show advanced options', 1;
GO
RECONFIGURE;
GO
sp_configure 'clr enabled', 1;
GO
RECONFIGURE;
GO

NOTENOTE

NOTENOTE

NOTENOTE

See Also

The common language runtime (CLR) integration feature is off by default, and must be enabled in order to use
objects that are implemented using CLR integration. To enable CLR integration, use the clr enabled option of the
sp_configure stored procedure in SQL Server Management Studio:

You can disable CLR integration by setting the clr enabled option to 0. When you disable CLR integration, SQL
Server stops executing all CLR routines and unloads all application domains.

To enable CLR integration, you must have ALTER SETTINGS server level permission, which is implicitly held by members of
the sysadmin and serveradmin fixed server roles.

Computers configured with large amounts of memory and a large number of processors may fail to load the CLR integration
feature of SQL Server when starting the server. To address this issue, start the server by using the -gmemory_to_reserve
SQL Server service startup option, and specify a memory value large enough. For more information, see Database Engine
Service Startup Options.

Common language runtime (CLR) execution is not supported under lightweight pooling. Before enabling CLR integration,
you must disable lightweight pooling. For more information, see lightweight pooling Server Configuration Option.

sp_configure (Transact-SQL)
clr enabled Server Configuration Option
RECONFIGURE (Transact-SQL)
GRANT (Transact-SQL)
Server-Level Roles

https://github.com/MicrosoftDocs/sql-docs/blob/live/docs/relational-databases/clr-integration/clr-integration-enabling.md
https://docs.microsoft.com/en-us/sql/temp2016a/database-engine/configure-windows/database-engine-service-startup-options
https://docs.microsoft.com/en-us/sql/temp2016a/database-engine/configure-windows/lightweight-pooling-server-configuration-option
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/system-stored-procedures/sp-configure-transact-sql
https://docs.microsoft.com/en-us/sql/temp2016a/database-engine/configure-windows/clr-enabled-server-configuration-option
https://docs.microsoft.com/en-us/sql/temp2016a/t-sql/language-elements/reconfigure-transact-sql
https://docs.microsoft.com/en-us/sql/temp2016a/t-sql/statements/grant-transact-sql
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/security/authentication-access/server-level-roles

CLR Integration - Overview
10/1/2018 • 4 minutes to read • Edit Online

APPLIES TO: SQL Server Azure SQL Database Azure SQL Data Warehouse Parallel Data
Warehouse

Advantages of CLR Integration

NOTENOTE

The common language runtime (CLR) is the heart of the Microsoft .NET Framework and provides the execution
environment for all .NET Framework code. Code that runs within the CLR is referred to as managed code. The CLR
provides various functions and services required for program execution, including just-in-time (JIT) compilation,
allocating and managing memory, enforcing type safety, exception handling, thread management, and security. See
the .NET Framework SDK for more information.

With the CLR hosted in Microsoft SQL Server (called CLR integration), you can author stored procedures, triggers,
user-defined functions, user-defined types, and user-defined aggregates in managed code. Because managed code
compiles to native code prior to execution, you can achieve significant performance increases in some scenarios.

Managed code uses Code Access Security (CAS) to prevent assemblies from performing certain operations. SQL
Server uses CAS to help secure the managed code and prevent compromise of the operating system or database
server.

Transact-SQL is specifically designed for direct data access and manipulation in the database. While Transact-SQL
excels at data access and management, it is not a full-fledged programming language. For example, Transact-SQL
does not support arrays, collections, for-each loops, bit shifting, or classes. While some of these constructs can be
simulated in Transact-SQL, managed code has integrated support for these constructs. Depending on the scenario,
these features can provide a compelling reason to implement certain database functionality in managed code.

Microsoft Visual Basic .NET and Microsoft Visual C# offer object-oriented capabilities such as encapsulation,
inheritance, and polymorphism. Related code can now be easily organized into classes and namespaces. When you
are working with large amounts of server code, this allows you to more easily organize and maintain your code.

Managed code is better suited than Transact-SQL for calculations and complicated execution logic, and features
extensive support for many complex tasks, including string handling and regular expressions. With the
functionality found in the .NET Framework Library, you have access to thousands of pre-built classes and routines.
These can be easily accessed from any stored procedure, trigger or user defined function. The Base Class Library
(BCL) includes classes that provide functionality for string manipulation, advanced math operations, file access,
cryptography, and more.

While many of these classes are available for use from within CLR code in SQL Server, those that are not appropriate for
server-side use (for example, windowing classes), are not available. For more information, see Supported .NET Framework
Libraries.

One of the benefits of managed code is type safety, or the assurance that code accesses types only in well-defined,
permissible ways. Before managed code is executed, the CLR verifies that the code is safe. For example, the code is
checked to ensure that no memory is read that has not previously been written. The CLR can also help ensure that
code does not manipulate unmanaged memory.

CLR integration offers the potential for improved performance. For information, see Performance of CLR
Integration.

https://github.com/MicrosoftDocs/sql-docs/blob/live/docs/relational-databases/clr-integration/clr-integration-overview.md
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/clr-integration/database-objects/supported-net-framework-libraries

WARNINGWARNING

Choosing Between Transact-SQL and Managed Code

Choosing Between Execution in the Server and Execution in the ClientChoosing Between Execution in the Server and Execution in the Client

Choosing Between Extended Stored Procedures and Managed Code

See Also

CLR uses Code Access Security (CAS) in the .NET Framework, which is no longer supported as a security boundary. A CLR
assembly created with PERMISSION_SET = SAFE may be able to access external system resources, call unmanaged code, and
acquire sysadmin privileges. Beginning with SQL Server 2017 (14.x), an sp_configure option called clr strict security

is introduced to enhance the security of CLR assemblies. clr strict security is enabled by default, and treats SAFE and
EXTERNAL_ACCESS assemblies as if they were marked UNSAFE . The clr strict security option can be disabled for

backward compatibility, but this is not recommended. Microsoft recommends that all assemblies be signed by a certificate or
asymmetric key with a corresponding login that has been granted UNSAFE ASSEMBLY permission in the master database. For
more information, see CLR strict security.

When writing stored procedures, triggers, and user-defined functions, one decision you must make is whether to
use traditional Transact-SQL, or a .NET Framework language such as Visual Basic .NET or Visual C#. Use Transact-
SQL when the code will mostly perform data access with little or no procedural logic. Use managed code for CPU-
intensive functions and procedures that feature complex logic, or when you want to make use of the BCL of the
.NET Framework.

Another factor in your decision about whether to use Transact-SQL or managed code is where you would like your
code to reside, the server computer or the client computer. Both Transact-SQL and managed code can be run on
the server. This places code and data close together, and allows you to take advantage of the processing power of
the server. On the other hand, you may wish to avoid placing processor intensive tasks on your database server.
Most client computers today are very powerful, and you may wish to take advantage of this processing power by
placing as much code as possible on the client. Managed code can run on a client computer, while Transact-SQL
cannot.

Extended stored procedures can be built to perform functionality not possible with Transact-SQL stored
procedures. Extended stored procedures can, however, compromise the integrity of the SQL Server process, while
managed code that is verified to be type-safe cannot. Further, memory management, scheduling of threads and
fibers, and synchronization services are more deeply integrated between the managed code of the CLR and SQL
Server. With CLR integration, you have a more secure way than extended stored procedures to write the stored
procedures you need to perform tasks not possible in Transact-SQL. For more information about CLR integration
and extended stored procedures, see Performance of CLR Integration.

Installing the .NET Framework
Architecture of CLR Integration
Data Access from CLR Database Objects
Getting Started with CLR Integration

https://docs.microsoft.com/en-us/sql/temp2016a/database-engine/configure-windows/clr-strict-security
http://technet.microsoft.com/library/ms166014(v=SQL.105).aspx
http://msdn.microsoft.com/library/05e4b872-3d21-46de-b4d5-739b5f2a0cf9
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/clr-integration/database-objects/getting-started-with-clr-integration

CLR Integration - What's New
10/1/2018 • 2 minutes to read • Edit Online

APPLIES TO: SQL Server Azure SQL Database Azure SQL Data Warehouse Parallel Data
Warehouse
The following are new features in CLR integration in SQL Server 2012 (11.x):

In version 4 of the CLR, CLR database objects no longer catch corrupted state exceptions. These exceptions
are now caught in the CLR integration hosting layer. These exceptions can still be caught by the CLR
database components by setting a code attribute (<legacyCorruptedStateExceptionsPolicy> Element).
However, this is not recommended because results are not reliable when a corrupted state exception occurs.

Due to the strict security requirements of SQL Server 2012 (11.x), CLR database components will continue
to use the Code Access Security model defined in CLR version 2.0.

In CLR version 4, a format error in a System.TimeSpan value will generate a System.FormatExceptions.
Prior to version 4 of the CLR, a format error in a System.TimeSpan value was ignored. Database
applications that rely on the behavior prior to version 4 of the CLR should run with a database compatibility
level (ALTER DATABASE Compatibility Level) of 100 or lower. For more information, see
<TimeSpan_LegacyFormatMode> Element.

Version 4 of the CLR supports Unicode 5.1. Sort operations involving some accent marks and symbols will
be improved. Compatibility problems may occur if your application relies on legacy sorting behavior. To
enable legacy sorting, the database compatibility level (ALTER DATABASE Compatibility Level) must be
set to 100 or lower. To support this, SQL Server 2012 (11.x) will install sort00001000.dll in the .NET
Framework 4 directory (C:\Windows\Microsoft.NET\Framework\v4.0.30319). For more information, see
<CompatSortNLSVersion> Element.

The following columns have been added to sys.dm_clr_appdomains: total_processor_time_ms,
total_allocated_memory_kb, and survived_memory_kb.

https://github.com/MicrosoftDocs/sql-docs/blob/live/docs/relational-databases/clr-integration/clr-integration-what-s-new.md
http://go.microsoft.com/fwlink/?LinkId=204954
http://go.microsoft.com/fwlink/?LinkId=205109
http://go.microsoft.com/fwlink/?LinkId=205110
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/system-dynamic-management-views/sys-dm-clr-appdomains-transact-sql

CLR Integration Architecture - Performance
10/1/2018 • 6 minutes to read • Edit Online

APPLIES TO: SQL Server Azure SQL Database Azure SQL Data Warehouse Parallel Data
Warehouse

The Compilation Process

Fast Transitions Between SQL Server and CLRFast Transitions Between SQL Server and CLR

Performance Considerations

User-Defined FunctionsUser-Defined Functions

User-Defined AggregatesUser-Defined Aggregates

This topic discusses some of the design choices that enhance the performance of Microsoft SQL Server
integration with the Microsoft .NET Framework common language runtime (CLR).

During compilation of SQL expressions, when a reference to a managed routine is encountered, a Microsoft
intermediate language (MSIL) stub is generated. This stub includes code to marshal the routine parameters from
SQL Server to the CLR, invoke the function, and return the result. This "glue" code is based on the type of
parameter and on parameter direction (in, out, or reference).

The glue code enables type-specific optimizations and ensures efficient enforcement of SQL Server semantics,
such as nullability, constraining facets, by-value, and standard exception handling. By generating code for the exact
types of the arguments, you avoid type coercion or wrapper object creation costs (called "boxing") across the
invocation boundary.

The generated stub is then compiled to native code and optimized for the particular hardware architecture on
which SQL Server executes, using the JIT (just-in-time) compilation services of the CLR. The JIT services are
invoked at the method level and allow the SQL Server hosting environment to create a single compilation unit
that spans both SQL Server and CLR execution. Once the stub is compiled, the resulting function pointer becomes
the run-time implementation of the function. This code generation approach ensures that there are no additional
invocation costs related to reflection or metadata access at run time.

The compilation process yields a function pointer that can be called at run time from native code. In the case of
scalar-valued user-defined functions, this function invocation happens on a per-row basis. To minimize the cost of
transitioning between SQL Server and the CLR, statements that contain any managed invocation have a startup
step to identify the target application domain. This identification step reduces the cost of transitioning for each
row.

The following summarizes performance considerations specific to CLR integration in SQL Server. More detailed
information can be found in "Using CLR Integration in SQL Server 2005" on the MSDN Web site. General
information regarding managed code performance can be found in "Improving .NET Application Performance and
Scalability" on the MSDN Web site.

CLR functions benefit from a quicker invocation path than that of Transact-SQL user-defined functions.
Additionally, managed code has a decisive performance advantage over Transact-SQL in terms of procedural
code, computation, and string manipulation. CLR functions that are computing-intensive and that do not perform
data access are better written in managed code. Transact-SQL functions do, however, perform data access more
efficiently than CLR integration.

Managed code can significantly outperform cursor-based aggregation. Managed code generally performs slightly

https://github.com/MicrosoftDocs/sql-docs/blob/live/docs/relational-databases/clr-integration/clr-integration-architecture-performance.md
http://go.microsoft.com/fwlink/?LinkId=50332
http://go.microsoft.com/fwlink/?LinkId=50333

Streaming Table-Valued FunctionsStreaming Table-Valued Functions

Arrays vs. CursorsArrays vs. Cursors

String DataString Data

CLR vs. Extended Stored ProceduresCLR vs. Extended Stored Procedures

NOTENOTE

slower than built-in SQL Server aggregate functions. We recommend that if a native built-in aggregate function
exists, you should use it. In cases in which the needed aggregation is not natively supported, consider a CLR user-
defined aggregate over a cursor-based implementation for performance reasons.

Applications often need to return a table as a result of invoking a function. Examples include reading tabular data
from a file as part of an import operation, and converting comma-separated-values to a relational representation.
Typically, you can accomplish this by materializing and populating the result table before it can be consumed by
the caller. The integration of the CLR into SQL Server introduces a new extensibility mechanism called a
streaming table-valued function (STVF). Managed STVFs perform better than comparable extended stored
procedure implementations.

STVFs are managed functions that return an IEnumerable interface. IEnumerable has methods to navigate the
result set returned by the STVF. When the STVF is invoked, the returned IEnumerable is directly connected to
the query plan. The query plan calls IEnumerable methods when it needs to fetch rows. This iteration model
allows results to be consumed immediately after the first row is produced, instead of waiting until the entire table
is populated. It also significantly reduces the memory consumed by invoking the function.

When Transact-SQL cursors must traverse data that is more easily expressed as an array, managed code can be
used with significant performance gains.

SQL Server character data, such as varchar, can be of the type SqlString or SqlChars in managed functions.
SqlString variables create an instance of the entire value into memory. SqlChars variables provide a streaming
interface that can be used to achieve better performance and scalability by not creating an instance of the entire
value into memory. This becomes particularly important for large object (LOB) data. Additionally, server XML
data can be accessed through a streaming interface returned by SqlXml.CreateReader().

The Microsoft.SqlServer.Server application programming interfaces (APIs) that allow managed procedures to
send result sets back to the client perform better than the Open Data Services (ODS) APIs used by extended
stored procedures. Furthermore, the System.Data.SqlServer APIs support data types such as xml, varchar(max),
nvarchar(max), and varbinary(max), introduced in SQL Server 2005 (9.x), while the ODS APIs have not been
extended to support the new data types.

With managed code, SQL Server manages use of resources such as memory, threads, and synchronization. This is
because the managed APIs that expose these resources are implemented on top of the SQL Server resource
manager. Conversely, SQL Server has no view or control over the resource usage of the extended stored
procedure. For example, if an extended stored procedure consumes too much CPU or memory resources, there is
no way to detect or control this with SQL Server. With managed code, however, SQL Server can detect that a
given thread has not yielded for a long period of time, and then force the task to yield so that other work can be
scheduled. Consequently, using managed code provides for better scalability and system resource usage.

Managed code may incur additional overhead necessary to maintain the execution environment and perform
security checks. This is the case, for example, when running inside SQL Server and numerous transitions from
managed to native code are required (because SQL Server needs to do additional maintenance on thread-specific
settings when moving out to native code and back). Consequently, extended stored procedures can significantly
outperform managed code running inside SQL Server for cases in which there are frequent transitions between
managed and native code.

It is recommended that you do not develop new extended stored procedures, because this feature has been deprecated.

Native Serialization for User-Defined TypesNative Serialization for User-Defined Types

Normalization of Comparable UDTsNormalization of Comparable UDTs

Scalable Memory UsageScalable Memory Usage

See Also

User-defined types (UDTs) are designed as an extensibility mechanism for the scalar type system. SQL Server
implements a serialization format for UDTs called Format.Native. During compilation, the structure of the type is
examined to generate MSIL that is customized for that particular type definition.

Native serialization is the default implementation for SQL Server. User-defined serialization invokes a method
defined by the type author to do the serialization. Format.Native serialization should be used when possible for
best performance.

Relational operations, such as sorting and comparing UDTs, operate directly on the binary representation of the
value. This is accomplished by storing a normalized (binary ordered) representation of the state of the UDT on
disk.

Normalization has two benefits: it makes the comparison operation considerably less expensive by avoiding the
construction of the type instance and the method invocation overhead; and it creates a binary domain for the UDT,
enabling the construction of histograms, indexes, and histograms for values of the type. Consequently, normalized
UDTs have a very similar performance profile to the native built-in types for operations that do not involve
method invocation.

In order for managed garbage collection to perform and scale well in SQL Server, avoid large, single allocation.
Allocations greater than 88 kilobytes (KB) in size will be placed on the Large Object Heap, which will cause
garbage collection to perform and scale much worse than many smaller allocations. For example, if you need to
allocate a large multi-dimensional array, it is better to allocate a jagged (scattered) array.

CLR User-Defined Types

https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/clr-integration-database-objects-user-defined-types/clr-user-defined-types

CLR Integration Architecture - CLR Hosted
Environment
10/1/2018 • 12 minutes to read • Edit Online

APPLIES TO: SQL Server Azure SQL Database Azure SQL Data Warehouse Parallel Data
Warehouse

Basic Concepts of CLR Architecture

NOTENOTE

SQL Server integration with the .NET Framework common language runtime (CLR) enables database
programmers to use languages such as Visual C#, Visual Basic .NET, and Visual C++. Functions, stored
procedures, triggers, data types, and aggregates are among the kinds of business logic that programmers can write
with these languages.

The CLR features garbage-collected memory, pre-emptive threading, metadata services (type reflection), code
verifiability, and code access security. The CLR uses metadata to locate and load classes, lay out instances in
memory, resolve method invocations, generate native code, enforce security, and set run-time context boundaries.

The CLR and SQL Server differ as run-time environments in the way they handle memory, threads, and
synchronization. This topic describes the way in which these two run times are integrated so that all system
resources are managed uniformly. This topic also covers the way in which CLR code access security (CAS) and
SQL Server security are integrated to provide a reliable and secure execution environment for user code.

In the .NET Framework, a programmer writes in a high-level language that implements a class defining its
structure (for example, the fields or properties of the class) and methods. Some of these methods can be static
functions. The compilation of the program produces a file called an assembly that contains the compiled code in
the Microsoft intermediate language (MSIL), and a manifest that contains all references to dependent assemblies.

Assemblies are a vital element in the architecture of the CLR. They are the units of packaging, deployment, and versioning of
application code in the .NET Framework. Using assemblies, you can deploy application code inside the database and provide a
uniform way to administer, back up, and restore complete database applications.

The assembly manifest contains metadata about the assembly, describing all of the structures, fields, properties,
classes, inheritance relationships, functions, and methods defined in the program. The manifest establishes the
assembly identity, specifies the files that make up the assembly implementation, specifies the types and resources
that make up the assembly, itemizes the compile-time dependencies on other assemblies, and specifies the set of
permissions required for the assembly to run properly. This information is used at run time to resolve references,
enforce version binding policy, and validate the integrity of loaded assemblies.

The .NET Framework supports custom attributes for annotating classes, properties, functions, and methods with
additional information the application may capture in metadata. All .NET Framework compilers consume these
annotations without interpretation and store them as assembly metadata. These annotations can be examined in
the same way as any other metadata.

Managed code is MSIL executed in the CLR, rather than directly by the operating system. Managed code
applications acquire CLR services, such as automatic garbage collection, run-time type checking, and security
support. These services help provide uniform platform- and language-independent behavior of managed code
applications.

https://github.com/MicrosoftDocs/sql-docs/blob/live/docs/relational-databases/clr-integration/clr-integration-architecture-clr-hosted-environment.md

Design Goals of CLR Integration

R e l i a b i l i t y (Sa f e t y)R e l i a b i l i t y (Sa f e t y)

Sc a l a b i l i t ySc a l a b i l i t y

Se c u r i t ySe c u r i t y

P e r f o rma n c eP e r f o rma n c e

CLR Services

Ty p e s a f e t y v e r i f i c a t i o nTy p e s a f e t y v e r i f i c a t i o n

A p p l i c a t i o n d o ma i n sA p p l i c a t i o n d o ma i n s

C o d e A c c e s s Se c u r i t y (C A S)C o d e A c c e s s Se c u r i t y (C A S)

When user code runs inside the CLR-hosted environment in SQL Server (called CLR integration), the following
design goals apply:

User code should not be allowed to perform operations that compromise the integrity of the Database Engine
process, such as popping a message box requesting a user response or exiting the process. User code should not
be able to overwrite Database Engine memory buffers or internal data structures.

SQL Server and the CLR have different internal models for scheduling and memory management. SQL Server
supports a cooperative, non-preemptive threading model in which the threads voluntarily yield execution
periodically, or when they are waiting on locks or I/O. The CLR supports a preemptive threading model. If user
code running inside SQL Server can directly call the operating system threading primitives, then it does not
integrate well into the SQL Server task scheduler and can degrade the scalability of the system. The CLR does not
distinguish between virtual and physical memory, but SQL Server directly manages physical memory and is
required to use physical memory within a configurable limit.

The different models for threading, scheduling, and memory management present an integration challenge for a
relational database management system (RDBMS) that scales to support thousands of concurrent user sessions.
The architecture should ensure that the scalability of the system is not compromised by user code calling
application programming interfaces (APIs) for threading, memory, and synchronization primitives directly.

User code running in the database must follow SQL Server authentication and authorization rules when accessing
database objects such as tables and columns. In addition, database administrators should be able to control access
to operating system resources, such as files and network access, from user code running in the database. This
becomes important as managed programming languages (unlike non-managed languages such as Transact-SQL)
provide APIs to access such resources. The system must provide a secure way for user code to access machine
resources outside the Database Engine process. For more information, see CLR Integration Security.

Managed user code running in the Database Engine should have computational performance comparable to the
same code run outside the server. Database access from managed user code is not as fast as native Transact-SQL.
For more information, see Performance of CLR Integration.

The CLR provides a number of services to help achieve the design goals of CLR integration with SQL Server.

Type-safe code is code that accesses memory structures only in well-defined ways. For example, given a valid
object reference, type-safe code can access memory at fixed offsets corresponding to actual field members.
However, if the code accesses memory at arbitrary offsets inside or outside the range of memory that belongs to
the object, then it is not type-safe. When assemblies are loaded in the CLR, prior to the MSIL being compiled using
just-in-time (JIT) compilation, the runtime performs a verification phase that examines code to determine its type-
safety. Code that successfully passes this verification is called verifiably type-safe code.

The CLR supports the notion of application domains as execution zones within a host process where managed
code assemblies can be loaded and executed. The application domain boundary provides isolation between
assemblies. The assemblies are isolated in terms of visibility of static variables and data members and the ability to
call code dynamically. Application domains are also the mechanism for loading and unloading code. Code can be
unloaded from memory only by unloading the application domain. For more information, see Application Domains
and CLR Integration Security.

The CLR security system provides a way to control what kinds of operations managed code can perform by

https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/clr-integration/security/clr-integration-security
http://msdn.microsoft.com/library/54ee904e-e21a-4ee7-b4ad-a6f6f71bd473

Ho s t P ro t e c t i o n A t t r i b u t e s (HP A s)Ho s t P ro t e c t i o n A t t r i b u t e s (HP A s)

How SQL Server and the CLR Work Together

Sc a l a b i l i t y : C o mmo n t h re a d i n g , s c h e d u l i n g , a n d s y n c h ro n i z a t i o nSc a l a b i l i t y : C o mmo n t h re a d i n g , s c h e d u l i n g , a n d s y n c h ro n i z a t i o n

assigning permissions to code. Code access permissions are assigned based on code identity (for example, the
signature of the assembly or the origin of the code).

The CLR provides for a computer-wide policy that can be set by the computer administrator. This policy defines the
permission grants for any managed code running on the machine. In addition, there is a host-level security policy
that can be used by hosts such as SQL Server to specify additional restrictions on managed code.

If a managed API in the .NET Framework exposes operations on resources that are protected by a code access
permission, the API will demand that permission before accessing the resource. This demand causes the CLR
security system to trigger a comprehensive check of every unit of code (assembly) in the call stack. Only if the
entire call chain has permission will access to the resource be granted.

Note that the ability to generate managed code dynamically, using the Reflection.Emit API, is not supported inside
the CLR-hosted environment in SQL Server. Such code would not have the CAS permissions to run and would
therefore fail at run time. For more information, see CLR Integration Code Access Security.

The CLR provides a mechanism to annotate managed APIs that are part of the .NET Framework with certain
attributes that may be of interest to a host of the CLR. Examples of such attributes include:

SharedState, which indicates whether the API exposes the ability to create or manage shared state (for
example, static class fields).

Synchronization, which indicates whether the API exposes the ability to perform synchronization between
threads.

ExternalProcessMgmt, which indicates whether the API exposes a way to control the host process.

Given these attributes, the host can specify a list of HPAs, such as the SharedState attribute, that should be
disallowed in the hosted environment. In this case, the CLR denies attempts by user code to call APIs that
are annotated by the HPAs in the prohibited list. For more information, see Host Protection Attributes and
CLR Integration Programming.

This section discusses how SQL Server integrates the threading, scheduling, synchronization, and memory
management models of SQL Server and the CLR. In particular, this section examines the integration in light of
scalability, reliability, and security goals. SQL Server essentially acts as the operating system for the CLR when it is
hosted inside SQL Server. The CLR calls low-level routines implemented by SQL Server for threading, scheduling,
synchronization, and memory management. These are the same primitives that the rest of the SQL Server engine
uses. This approach provides several scalability, reliability, and security benefits.

CLR calls SQL Server APIs for creating threads, both for running user code and for its own internal use. In order to
synchronize between multiple threads, the CLR calls SQL Server synchronization objects. This allows the SQL
Server scheduler to schedule other tasks when a thread is waiting on a synchronization object. For example, when
the CLR initiates garbage collection, all of its threads wait for garbage collection to finish. Because the CLR threads
and the synchronization objects they are waiting on are known to the SQL Server scheduler, SQL Server can
schedule threads that are running other database tasks not involving the CLR. This also enables SQL Server to
detect deadlocks that involve locks taken by CLR synchronization objects and employ traditional techniques for
deadlock removal.

Managed code runs preemptively in SQL Server. The SQL Server scheduler has the ability to detect and stop
threads that have not yielded for a significant amount of time. The ability to hook CLR threads to SQL Server
threads implies that the SQL Server scheduler can identify "runaway" threads in the CLR and manage their priority.
Such runaway threads are suspended and put back in the queue. Threads that are repeatedly identified as runaway
threads are not allowed to run for a given period of time so that other executing workers can run.

https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/clr-integration-security-host-protection-attributes/host-protection-attributes-and-clr-integration-programming

NOTENOTE

Sc a l a b i l i t y : C o mmo n me mo ry ma n a g e me n tSc a l a b i l i t y : C o mmo n me mo ry ma n a g e me n t

R e l i a b i l i t y : A p p l i c a t i o n d o ma i n s a n d u n re c o v e ra b l e e x c e p t i o n sR e l i a b i l i t y : A p p l i c a t i o n d o ma i n s a n d u n re c o v e ra b l e e x c e p t i o n s

Se c u r i t y : P e rmi s s i o n s e t sSe c u r i t y : P e rmi s s i o n s e t s

Permission set SAFE EXTERNAL_ACCESS UNSAFE

Code Access Security Execute only Execute + access to external
resources

Unrestricted

Programming model
restrictions

Yes Yes No restrictions

Verifiability requirement Yes Yes No

Ability to call native code No No Yes

Long-running managed code that accesses data or allocates enough memory to trigger garbage collection will yield
automatically. Long-running managed code that does not access data or allocate enough managed memory to trigger
garbage collection should explicitly yield by calling the System.Thread.Sleep() function of the .NET Framework.

The CLR calls SQL Server primitives for allocating and de-allocating its memory. Because the memory used by the
CLR is accounted for in the total memory usage of the system, SQL Server can stay within its configured memory
limits and ensure the CLR and SQL Server are not competing with each other for memory. SQL Server can also
reject CLR memory requests when system memory is constrained, and ask CLR to reduce its memory use when
other tasks need memory.

When managed code in the .NET Framework APIs encounters critical exceptions, such as out-of-memory or stack
overflow, it is not always possible to recover from such failures and ensure consistent and correct semantics for
their implementation. These APIs raise a thread abort exception in response to these failures.

When hosted in SQL Server, such thread aborts are handled as follows: the CLR detects any shared state in the
application domain in which the thread abort occurs. The CLR does this by checking for the presence of
synchronization objects. If there is shared state in the application domain, then the application domain itself is
unloaded. The unloading of the application domain stops database transactions that are currently running in that
application domain. Because the presence of shared state can widen the impact of such critical exceptions to user
sessions other than the one triggering the exception, SQL Server and the CLR have taken steps to reduce the
likelihood of shared state. For more information, see the .NET Framework documentation.

SQL Server allows users to specify the reliability and security requirements for code deployed into the database.
When assemblies are uploaded into the database, the author of the assembly can specify one of three permission
sets for that assembly: SAFE, EXTERNAL_ACCESS and UNSAFE.

SAFE is the most reliable and secure mode with associated restrictions in terms of the allowed programming
model. SAFE assemblies are given enough permission to run, perform computations, and have access to the local
database. SAFE assemblies need to be verifiably type safe and are not allowed to call unmanaged code.

UNSAFE is for highly trusted code that can only be created by database administrators. This trusted code has no
code access security restrictions, and it can call unmanaged (native) code.

EXTERNAL_ACCESS provides an intermediate security option, allowing code to access resources external to the
database but still having the reliability guarantees of SAFE.

SQL Server uses the host-level CAS policy layer to set up a host policy that grants one of the three sets of
permissions based on the permission set stored in SQL Server catalogs. Managed code running inside the

Programming Model RestrictionsProgramming Model Restrictions

See Also

database always gets one of these code access permission sets.

The programming model for managed code in SQL Server involves writing functions, procedures, and types which
typically do not require the use of state held across multiple invocations or the sharing of state across multiple user
sessions. Further, as described earlier, the presence of shared state can cause critical exceptions that impact the
scalability and the reliability of the application.

Given these considerations, we discourage the use of static variables and static data members of classes used in
SQL Server. For SAFE and EXTERNAL_ACCESS assemblies, SQL Server examines the metadata of the assembly
at CREATE ASSEMBLY time and fails the creation of such assemblies if it finds the use of static data members and
variables.

SQL Server also disallows calls to .NET Framework APIs that are annotated with the SharedState,
Synchronization and ExternalProcessMgmt host protection attributes. This prevents SAFE and
EXTERNAL_ACCESS assemblies from calling any APIs that enable sharing state, performing synchronization, and
affecting the integrity of the SQL Server process. For more information, see CLR Integration Programming Model
Restrictions.

CLR Integration Security
Performance of CLR Integration

https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/clr-integration/database-objects/clr-integration-programming-model-restrictions
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/clr-integration/security/clr-integration-security

Common Language Runtime Integration Overview
10/1/2018 • 2 minutes to read • Edit Online

APPLIES TO: SQL Server Azure SQL Database Azure SQL Data Warehouse Parallel Data
Warehouse

WARNINGWARNING

Microsoft SQL Server now features the integration of the common language runtime (CLR) component of the
.NET Framework for Microsoft Windows. The CLR supplies managed code with services such as cross-language
integration, code access security, object lifetime management, and debugging and profiling support. For SQL
Server users and application developers, CLR integration means that you can now write stored procedures,
triggers, user-defined types, user-defined functions (scalar and table-valued), and user-defined aggregate functions
using any .NET Framework language, including Microsoft Visual Basic .NET and Microsoft Visual C#. SQL Server
includes the .NET Framework version 4 pre-installed.

CLR uses Code Access Security (CAS) in the .NET Framework, which is no longer supported as a security boundary. A CLR
assembly created with PERMISSION_SET = SAFE may be able to access external system resources, call unmanaged code, and
acquire sysadmin privileges. Beginning with SQL Server 2017 (14.x), an sp_configure option called clr strict security

is introduced to enhance the security of CLR assemblies. clr strict security is enabled by default, and treats SAFE and
EXTERNAL_ACCESS assemblies as if they were marked UNSAFE . The clr strict security option can be disabled for

backward compatibility, but this is not recommended. Microsoft recommends that all assemblies be signed by a certificate or
asymmetric key with a corresponding login that has been granted UNSAFE ASSEMBLY permission in the master database. For
more information, see CLR strict security. SQL Server administrators can also add assemblies to a list of assemblies, which the
Database Engine should trust. For more information, see sys.sp_add_trusted_assembly.

Among the major benefits of this integration are:

A better programming model. The .NET Framework languages are in many respects richer than Transact-
SQL, offering constructs and capabilities previously not available to SQL Server developers. Developers
may also leverage the power of the .NET Framework Library, which provides an extensive set of classes that
can be used to quickly and efficiently solve programming problems.

Improved safety and security. Managed code runs in a common language run-time environment, hosted
by the Database Engine. SQL Server leverages this to provide a safer and more secure alternative to the
extended stored procedures available in earlier versions of SQL Server.

Ability to define data types and aggregate functions. User defined types and user defined aggregates
are two new managed database objects which expand the storage and querying capabilities of SQL Server.

Streamlined development through a standardized environment. Database development is integrated
into future releases of the Microsoft Visual Studio .NET development environment. Developers use the
same tools for developing and debugging database objects and scripts as they use to write middle-tier or
client-tier .NET Framework components and services.

Potential for improved performance and scalability. In many situations, the .NET Framework language
compilation and execution models deliver improved performance over Transact-SQL.

This following table lists the topics in this section.

Overview of CLR Integration
Describes the kinds of objects that can be built using CLR integration, and reviews the requirements for
building database objects using CLR integration.

https://github.com/MicrosoftDocs/sql-docs/blob/live/docs/relational-databases/clr-integration/common-language-runtime-integration-overview.md
https://docs.microsoft.com/en-us/sql/temp2016a/database-engine/configure-windows/clr-strict-security
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/system-stored-procedures/sys-sp-add-trusted-assembly-transact-sql

See Also

What's New in CLR Integration
Describes the new features in this release.

Architecture of CLR Integration
Describes the design goals of CLR integration.

Enabling CLR Integration
Describes how to enable CLR integration.

Installing the .NET Framework
Performance of CLR Integration

http://msdn.microsoft.com/library/05e4b872-3d21-46de-b4d5-739b5f2a0cf9
http://technet.microsoft.com/library/ms166014(v=SQL.105).aspx

Debugging CLR Database Objects
10/1/2018 • 4 minutes to read • Edit Online

APPLIES TO: SQL Server Azure SQL Database Azure SQL Data Warehouse Parallel Data
Warehouse

Debugging Permissions and Restrictions

Overview of Debugging Managed Database Objects

SQL Server provides support for debugging Transact-SQL and common language runtime (CLR) objects in the
database. The key aspects of debugging in SQL Server are the ease of setup and use, and the integration of the
SQL Server debugger with the Microsoft Visual Studio debugger. Furthermore, debugging works across
languages. Users can step seamlessly into CLR objects from Transact-SQL, and vice versa. The Transact-SQL
debugger in SQL Server Management Studio cannot be used to debug managed database objects, but you can
debug the objects by using the debuggers in Visual Studio. Managed database object debugging in Visual Studio
supports all common debugging features, such as "step into" and "step over" statements within routines executing
on the server. Debuggers can set breakpoints, inspect the call stack, inspect variables, and modify variable values
while debugging. Note that Visual Studio .NET 2003 cannot be used for CLR integration programming or
debugging. SQL Server includes the .NET Framework pre-installed, and Visual Studio .NET 2003 cannot use the
.NET Framework 2.0 assemblies.

For more information about debugging managed code using Visual Studio, see the "Debugging Managed Code"
topic in the Visual Studio documentation.

Debugging is a highly privileged operation, and therefore only members of the sysadmin fixed server role are
allowed to do so in SQL Server.

The following restrictions apply while debugging:

Debugging CLR routines is restricted to one debugger instance at a time. This limitation applies because all
CLR code execution freezes when a break point is hit and execution does not continue until the debugger
advances from the break point. However, you can continue debugging Transact-SQL in other connections.
Although Transact-SQL debugging does not freeze other executions on the server, it could cause other
connections to wait by holding a lock.

Existing connections cannot be debugged, only new connections, as SQL Server requires information about
the client and debugger environment before the connection can be made.

Due to the above restrictions, we recommend that Transact-SQL and CLR code be debugged on a test
server, and not on a production server.

Debugging in SQL Server follows a per-connection model. A debugger can detect and debug activities only to the
client connection to which it is attached. Because the functionality of the debugger is not limited by the type of
connection, both tabular data stream (TDS) and HTTP connections can be debugged. However, SQL Server does
not allow debugging existing connections. Debugging supports all common debugging features within routines
executing on the server. The interaction between a debugger and SQL Server happens through distributed
Component Object Model (COM).

For more information and scenarios about debugging managed stored procedures, functions, triggers, user-
defined types, and aggregates, see the "SQL Server CLR Integration Database Debugging" topic in the Visual
Studio documentation.

https://github.com/MicrosoftDocs/sql-docs/blob/live/docs/relational-databases/clr-integration/debugging-clr-database-objects.md
http://go.microsoft.com/fwlink/?LinkId=120377
http://go.microsoft.com/fwlink/?LinkId=120378

To debug a managed database objectTo debug a managed database object

ExampleExample

The TCP/IP network protocol must be enabled on the SQL Server instance in order to use Visual Studio for remote
development, debugging, and development. For more information about enabling TCP/IP protocol on the server,
see Configure Client Protocols.

1. Open Microsoft Visual Studio, create a new SQL Server project, and establish a connection to a database on
an instance of SQL Server.

2. Create a new type. In Solution Explorer, right-click the project, select Add and New Item… From the
Add New Item window, select Stored Procedure, User-Defined Function, User-Defined Type, Trigger,
Aggregate, or Class. Specify a name for the source file of the new type and click Add.

3. Add code for the new type to the text editor. For sample code for an example stored procedure, see the
section later in this topic.

4. Add a script that tests the type. In Solution Explorer, expand the TestScripts directory double-click
Test.sql to open the default test script source file. Add the test script, one that invokes the code to be
debugged, to the text editor. See below for a sample script.

5. Place one or more breakpoints in the source code. Right-click on a line of code in the text editor, within the
function or routine you want to debug, and select Breakpoint and Insert Breakpoint. The breakpoint is
added, highlighting the line of code in red.

6. In the Debug menu, select Start Debugging to compile, deploy, and test the project. The test script in
Test.sql will be run and the managed database object will be invoked.

7. When the yellow arrow designating the instruction pointer appears at the breakpoint code execution pauses
and you can begin debugging your managed database object. You can Step Over from the Debug menu to
advance the instruction pointer to the next line of code. The Locals window is used to observe the state of
the objects currently highlighted by the instruction pointer. Variables can be added to the Watch window.
The state of watched variables can be observed throughout the entire debugging session, not only when the
variable is in the line of code currently highlighted by instruction pointer. Select Continue from the Debug
menu to advance the instruction pointer to the next breakpoint or to complete execution of the routine if
there are no more breakpoints.

The following example returns the SQL Server version to the caller.

C#

https://docs.microsoft.com/en-us/sql/temp2016a/database-engine/configure-windows/configure-client-protocols

using System;
using System.Data;
using System.Data.SqlTypes;
using System.Data.SqlClient;
using Microsoft.SqlServer.Server;

public class StoredProcedures
{
 [Microsoft.SqlServer.Server.SqlProcedure]
 public static void GetVersion()
 {
 using(SqlConnection connection = new SqlConnection("context connection=true"))
 {
 connection.Open();
 SqlCommand command = new SqlCommand("select @@version",
 connection);
 SqlContext.Pipe.ExecuteAndSend(command);
 }
 }
}

Imports System
Imports System.Data
Imports System.Data.Sql
Imports System.Data.SqlTypes
Imports Microsoft.SqlServer.Server
Imports System.Data.SqlClient

Partial Public Class StoredProcedures
 <Microsoft.SqlServer.Server.SqlProcedure> _
 Public Shared Sub GetVersion()
 Using connection As New SqlConnection("context connection=true")
 connection.Open()
 Dim command As New SqlCommand("SELECT @@VERSION", connection)
 SqlContext.Pipe.ExecuteAndSend(command)
 End Using
 End Sub
End Class

EXEC GetVersion

See Also

Visual Basic

The following is a test script that invokes the GetVersion stored procedure defined above.

Common Language Runtime (CLR) Integration Programming Concepts

Deploying CLR Database Objects
10/1/2018 • 5 minutes to read • Edit Online

APPLIES TO: SQL Server Azure SQL Database Azure SQL Data Warehouse Parallel Data
Warehouse

Deploying the Assembly to the Test Server

NOTENOTE

To deploy the assembly using Visual StudioTo deploy the assembly using Visual Studio

To deploy the assembly using Transact-SQLTo deploy the assembly using Transact-SQL

Deployment is the process by which you distribute a finished application or module to be installed and run on
another computer. Using Microsoft Visual Studio, you can develop common language runtime (CLR) database
objects and deploy them to a test server. Alternatively, the managed database objects can also be compiled with
the Microsoft .NET Framework redistribution files, instead of Visual Studio. Once compiled, the assemblies
containing the CLR database objects can then be deployed to a test server using Visual Studio or Transact-SQL
statements. Note that Visual Studio .NET 2003 cannot be used for CLR integration programming or deployment.
SQL Server includes the .NET Framework pre-installed, and Visual Studio .NET 2003 cannot use the .NET
Framework 2.0 assemblies.

Once the CLR methods have been tested and verified on the test server, they can be distributed to production
servers using a deployment script. The deployment script can be generated manually, or by using SQL Server
Management Studio (see the procedure later in this topic).

The CLR integration feature is turned off by default in SQL Server and must be enabled in order to use CLR
assemblies. For more information, see Enabling CLR Integration.

Using Visual Studio, you can develop CLR functions, procedures, triggers, user-defined types (UDTs), or user-
defined aggregates (UDAs), and deploy them to a test server. These managed database objects can also be
compiled with the command line compilers, such as csc.exe and vbc.exe, included with the .NET Framework
redistribution files. The Visual Studio Integrated Development Environment is not required to develop managed
database objects for SQL Server.

Make sure that all compiler errors and warnings are resolved. The assemblies containing the CLR routines can
then be registered in a SQL Server database using Visual Studio or Transact-SQL statements.

The TCP/IP network protocol must be enabled on the SQL Server instance in order to use Microsoft Visual Studio for remote
development, debugging, and development. For more information about enabling TCP/IP protocol on the server, see
Configure Client Protocols.

1. Build the project by selecting Build <project name> from the Build menu.

2. Resolve all build errors and warnings before deploying the assembly to the test server.

3. Select Deploy from the Build menu. The assembly will then be registered in the SQL Server instance and
database specified when the SQL Server project was first created in Visual Studio.

1. Compile the assembly from the source file using the command line compilers included with the .NET
Framework.

2. For Microsoft Visual C# source files:

https://github.com/MicrosoftDocs/sql-docs/blob/live/docs/relational-databases/clr-integration/deploying-clr-database-objects.md
https://docs.microsoft.com/en-us/sql/temp2016a/database-engine/configure-windows/configure-client-protocols

Deploying the Assembly to Production Servers

To generate a deployment script using generate scriptsTo generate a deployment script using generate scripts

3. csc /target:library C:\helloworld.cs

4. For Microsoft Visual Basic source files:

vbc /target:library C:\helloworld.vb

These commands launch the Visual C# or Visual Basic compiler using the /target option to specify building
a library DLL.

5. Resolve all build errors and warnings before deploying the assembly to the test server.

6. Open SQL Server Management Studio on the test server. Create a new query, connected to a suitable test
database (such as AdventureWorks).

7. Create the assembly in the server by adding the following Transact-SQL to the query.

CREATE ASSEMBLY HelloWorld from 'c:\helloworld.dll' WITH PERMISSION_SET = SAFE;

8. The procedure, function, aggregate, user-defined type, or trigger must then be created in the instance of
SQL Server. If the HelloWorld assembly contains a method named HelloWorld in the Procedures class,
the following Transact-SQL can be added to the query to create a procedure called hello in SQL Server.

CREATE PROCEDURE hello

AS

EXTERNAL NAME HelloWorld.Procedures.HelloWorld

For more information about creating the different types of managed database objects in SQL Server, see
CLR User-Defined Functions, CLR User-Defined Aggregates, CLR User-Defined Types, CLR Stored
Procedures, and CLR Triggers.

Once the CLR database objects have been tested and verified on the test server, they can be distributed to
production servers. For more information about debugging managed database objects, see Debugging CLR
Database Objects.

The deployment of managed database objects is similar to that of regular database objects (tables, Transact-SQL
routines, and so on). The assemblies containing the CLR database objects can be deployed to other servers using a
deployment script. The deployment script can be built by using the "Generate Scripts" functionality of
Management Studio. The deployment script can also be built manually, or built using "Generate Scripts" and
manually altered. Once the deployment script has been built, it can be run on other instances of SQL Server to
deploy the managed database objects.

1. Open Management Studio and connect to the SQL Server instance where the managed assembly or
database object to be deployed is registered.

2. In the Object Explorer, expand the <server name> and Databases trees. Right-click the database where
the managed database object is registered, select Tasks, and then select Generate Scripts. The Script
Wizard opens.

3. Select the database from the list box and click Next.

4. In the Choose Script Options pane, click Next, or change the options and then click Next.

5. In the Choose Object Types pane, choose the type of database object to be deployed. Click Next.

6. For every object type selected in the Choose Object Types pane, a Choose <type> pane is presented. In

https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/clr-integration-database-objects-user-defined-functions/clr-user-defined-functions
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/clr-integration-database-objects-user-defined-functions/clr-user-defined-aggregates
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/clr-integration-database-objects-user-defined-types/clr-user-defined-types
http://msdn.microsoft.com/library/bbdd51b2-a9b4-4916-ba6f-7957ac6c3f33
http://msdn.microsoft.com/library/302a4e4a-3172-42b6-9cc0-4a971ab49c1c

Post Deployment Scripts

See Also

this pane, you can choose from all the instances of that database object type registered in the specified
database. Select one or more objects and click Next.

7. The Output Options pane comes up when all of the desired database object types have been selected.
Select Script to file and specify a file path for the script. Select Next. Review your selections and click
Finish. The deployment script is saved to the specified file path.

You can run a post deployment script.

To add a post deployment script, add a file called postdeployscript.sql in your Visual Studio project directory. For
example, right click your project in Solution Explorer and select Add Existing Item. Add the file in the root of
the project, rather than in the Test Scripts folder.

When you click deploy, Visual Studio will run this script after the deployment of your project.

Common Language Runtime (CLR) Integration Programming Concepts

Monitoring and Troubleshooting Managed Database
Objects
10/1/2018 • 3 minutes to read • Edit Online

APPLIES TO: SQL Server Azure SQL Database Azure SQL Data Warehouse Parallel Data
Warehouse

Profiler Trace Events

EVENT DESCRIPTION

Assembly Load Event Class Used to monitor assembly load requests (success and failures).

SQL:BatchStarting Event Class, SQL:BatchCompleted Event
Class

Provides information about Transact-SQL batches that have
started or completed.

SP:Starting Event Class, SP:Completed Event Class Used to monitor the execution of Transact-SQL stored
procedures.

SQL:StmtStarting Event Class, SQL:StmtCompleted Event Class Used to monitor the execution of CLR and Transact-SQL
routines.

Performance Counters

OBJECT DESCRIPTION

SQL Server, CLR Object Total time spent in CLR execution.

Windows System Monitor (PERFMON.EXE) Counters

This topic provides information about the tools that can be used to monitor and troubleshoot managed database
objects and assemblies running in SQL Server.

SQL Server provides SQL Trace and event notifications to monitor events that occur in the Database Engine. By
recording specified events, SQL Trace helps you troubleshoot performance, audit database activity, gather sample
data for a test environment, debug Transact-SQL statements and stored procedures, and gather data for
performance analysis tools. For more information, see SQL Trace and Extended Events.

SQL Server provides objects and counters that can be used by System Monitor to monitor activity in computers
running an instance of SQL Server. An object is any SQL Server resource, such as a SQL Server lock or a Windows
process. Each object contains one or more counters that determine various aspects of the objects to monitor. For
more information, see Use SQL Server Objects.

The Windows System Monitor (PERFMON.EXE) tool has several performance counters that can be used to
monitor CLR integration applications. The .NET CLR performance counters can be filtered by the "sqlservr"
process name to track CLR integration applications that are currently running.

https://github.com/MicrosoftDocs/sql-docs/blob/live/docs/relational-databases/clr-integration/monitoring-and-troubleshooting-managed-database-objects.md
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/sql-trace/sql-trace
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/extended-events/extended-events
http://msdn.microsoft.com/library/cfb0b69d-4ce0-4067-a3df-d82775e57886
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/event-classes/sql-batchstarting-event-class
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/event-classes/sql-batchcompleted-event-class
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/event-classes/sp-starting-event-class
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/event-classes/sp-completed-event-class
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/event-classes/sql-stmtstarting-event-class
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/event-classes/sql-stmtcompleted-event-class
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/performance-monitor/use-sql-server-objects
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/performance-monitor/sql-server-clr-object

PERFORMANCE OBJECT DESCRIPTION

SqlServer:CLR Provides CPU statistics for the server.

.NET CLR Exceptions Tracks the number of exceptions per second.

.NET CLR Loading Provides information about the AppDomains and assemblies
loaded in the server.

.NET CLR Memory Provides information about CLR memory usage. This object
can be used to flag alerts if memory usage gets too large.

.NET Data Provider for SQL Server Tracks the number of connects and disconnects per second.
This object can be used for monitoring the level of database
activity.

Catalog Views

CATALOG VIEW DESCRIPTION

sys.assemblies (Transact-SQL) Returns information about the assemblies registered in a
database.

sys.assembly_references (Transact-SQL) Identifies assemblies that reference other assemblies.

sys.assembly_modules (Transact-SQL) Returns information about each function, stored procedure,
and trigger defined in an assembly.

sys.assembly_files (Transact-SQL) Returns information about the assembly files registered in the
database.

sys.assembly_types (Transact-SQL) Identifies the user-defined types (UDTs) defined by an
assembly.

sys.module_assembly_usages (Transact-SQL) Identifies the assemblies that CLR modules are defined in.

sys.parameter_type_usages (Transact-SQL) Returns information about parameters that are user-defined
types.

sys.server_assembly_modules (Transact-SQL) Identifies the assembly that a CLR trigger is defined in.

sys.server_triggers (Transact-SQL) Identifies the server-level DDL triggers on a server, including
CLR triggers.

sys.type_assembly_usages (Transact-SQL) Identifies the assemblies that user-defined types are defined
in.

sys.types (Transact-SQL) Returns the system and user-defined types registered in the
database.

Catalog views return information that is used by the SQL Server Database Engine. We recommend that you use
catalog views because they are the most general interface to the catalog metadata and provide the most efficient
way to obtain, transform, and present customized forms of this information. All user-available catalog metadata is
exposed through catalog views. For more information, see Catalog Views (Transact-SQL).

https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/system-catalog-views/catalog-views-transact-sql
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/system-catalog-views/sys-assemblies-transact-sql
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/system-catalog-views/sys-assembly-references-transact-sql
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/system-catalog-views/sys-assembly-modules-transact-sql
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/system-catalog-views/sys-assembly-files-transact-sql
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/system-catalog-views/sys-assembly-types-transact-sql
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/system-catalog-views/sys-module-assembly-usages-transact-sql
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/system-catalog-views/sys-parameter-type-usages-transact-sql
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/system-catalog-views/sys-server-assembly-modules-transact-sql
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/system-catalog-views/sys-server-triggers-transact-sql
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/system-catalog-views/sys-type-assembly-usages-transact-sql
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/system-catalog-views/sys-types-transact-sql

Dynamic Management Views

DMV DESCRIPTION

sys.dm_clr_appdomains (Transact-SQL) Provides information about each application domain in the
server.

sys.dm_clr_loaded_assemblies (Transact-SQL) Identifies each managed assembly registered on the server.

sys.dm_clr_properties (Transact-SQL) Returns information about the hosted CLR.

sys.dm_clr_tasks (Transact-SQL) Identifies all the CLR tasks that are currently running.

sys.dm_exec_cached_plans (Transact-SQL) Returns information about the query execution plans that are
cached by SQL Server for faster query execution.

sys.dm_exec_query_stats (Transact-SQL) Returns aggregate performance statistics for cached query
plans.

sys.dm_exec_requests (Transact-SQL) Returns information about each request that is executing
within SQL Server.

sys.dm_os_memory_clerks (Transact-SQL) Returns all the memory clerks currently active in the SQL
Server instance, including CLR memory clerks.

See Also

Dynamic management views and functions return server state information that can be used to monitor the health
of a server instance, diagnose problems, and tune performance. For more information, see Dynamic Management
Views and Functions (Transact-SQL).

Common Language Runtime (CLR) Integration Programming Concepts

https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/system-dynamic-management-views/system-dynamic-management-views
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/system-dynamic-management-views/sys-dm-clr-appdomains-transact-sql
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/system-dynamic-management-views/sys-dm-clr-loaded-assemblies-transact-sql
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/system-dynamic-management-views/sys-dm-clr-properties-transact-sql
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/system-dynamic-management-views/sys-dm-clr-tasks-transact-sql
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/system-dynamic-management-views/sys-dm-exec-cached-plans-transact-sql
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/system-dynamic-management-views/sys-dm-exec-query-stats-transact-sql
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/system-dynamic-management-views/sys-dm-exec-requests-transact-sql
https://docs.microsoft.com/en-us/sql/temp2016a/relational-databases/system-dynamic-management-views/sys-dm-os-memory-clerks-transact-sql

	Cover Page
	Common Language Runtime (CLR) Integration Programming Concepts
	Database objects +
	Data access +
	Security +
	Assemblies +
	Assemblies - Designing
	Assemblies - Getting Information
	Assemblies - Implementing
	Assemblies - Properties
	Assemblies (Database Engine)
	CLR Integration - Enabling
	CLR Integration - Overview
	CLR Integration - What's New
	CLR Integration Architecture - Performance
	CLR Integration Architecture - CLR Hosted Environment
	Common Language Runtime Integration Overview
	Debugging CLR Database Objects
	Deploying CLR Database Objects
	Monitoring and Troubleshooting Managed Database Objects

